Eureka Math" Homework Helper

2015-2016

Grade 2
 Module 2
 Lessons 1-10

Eureka Math, A Story of Units ${ }^{\circledR}$
Published by the non-profit Great Minds.
Copyright © 2015 Great Minds. No part of this work may be reproduced, distributed, modified, sold, or commercialized, in whole or in part, without consent of the copyright holder. Please see our User Agreement for more information. "Great Minds" and "Eureka Math" are registered trademarks of Great Minds.

G2-M2-Lesson 1

1. The length of the picture of the shovel is about \qquad 8 centimeters.

I need to count the number of centimeter cubes between the endpoints. Then, I can find out the length of the picture in centimeters.

2. The length of a screwdriver is 19 centimeters. The handle is 5 centimeters long. What is the length of the top of the screwdriver?

G2-M2-Lesson 2

1. The picture of the eraser is about \qquad 4 centimeters long.

2. John used a centimeter cube and the mark and move forward strategy to measure these pieces of tape. Use his work to answer the following questions.

How long is Tape A? \qquad centimeters long. Which tape is shorter? \qquad

The total length of Tapes A and B is \qquad 14 centimeters.

Since John measured without any gaps or overlaps, I know that the distance between the pencil marks is the same length! I can count the length units for each piece of tape.

G2-M2-Lesson 3

Use your centimeter ruler to answer the following questions.

1. The picture of the animal track is about \qquad 4 cm long.

2. Measure the lengths of sides A, B, and C. Write each length on the line.

Side C
\qquad cm

How much shorter is Side C than Side B? \qquad 1 cm

$$
9-8=1
$$

I can use my centimeter ruler to measure the length of each side. Then, I can compare the lengths of two sides by subtracting.

G2-M2-Lesson 4

1. Circle cm (centimeter) or m (meter) to show which unit you would use to measure the length of each object.

Length of a glue stick	or	or	

2. Fill in the blanks with cm or m .

The height of the building is $12 \xrightarrow{\mathbf{m}}$.
The length of the blue thread was 8 \qquad longer than the red thread.

The runner broke the record for the 500 \qquad dash.

I can use my number sense here. I don't think a runner would break a record for a 500 centimeter dash; that's only 5 meter sticks long! The answer must be in meters.
3. Use the centimeter ruler below to find the length (from one mark to the next) of the shape.

The shape is $\mathbf{4} \mathbf{c m}$ long.

G2-M2-Lesson 5

1. Name two things in school that you would measure in meters. Estimate their lengths.

Item	Estimated Length
chalkboard	$\mathbf{4}$ meters
reading corner rug	3 meters
I know that the length from the doorknob to the floor is about corner rug is about 3 of those lengths. The rug looks shorter than the chalkboard, so I can estimate that the rug is about 3 meters long.	

2. Choose the best length estimate for each object.
a. Bulletin board

b. Scissors

c. Top of a student desk

18 cm or

I know that a 3-ring binder is about 30 centimeters long. I can picture 2 of those binders fitting across the length of my desktop, which would be about 60 centimeters long. So, 62 centimeters is closer to 60 centimeters than 18 centimeters.
3. Measure the length of the line below using your pinky finger. Write your estimate.

Estimate: \qquad 7 cm

Since the width of my pinky finger is about 1 centimeter, I can estimate that the length of the line is about 7 centimeters.

G2-M2-Lesson 6

1. Measure each set of lines in centimeters, and write the length on the line. Complete the comparison sentences.

Line A

Line B

Line C Line B A \quad Line C lan lay my meter strip along | each line to measure its |
| :--- |
| length. Ineed to line up the |
| zero point on my ruler with |
| the endpoint of the line! |

$$
15 \mathrm{~cm}
$$

\qquad cm \qquad
Lines A, B, and C are about \qquad 28 cm combined.

Line C is about \qquad 7 cm shorter than Line A.

Since Line A is 15 cm long and Line C is 8 cm long, l know that Line C is shorter. I can subtract: $15-8=7$. Line C is 7 cm shorter than Line A.
2. Line D is 45 cm long. Line E is 70 cm long. Line F is 1 m long.

Line E is \qquad 25 cm longer than Line D.

Line E doubled is \qquad cm longer than Line F .

I know that 1 meter equals 100 centimeters. If I double Line E, then it will be 140 cm long because $70+70=140.140$ centimeters is 40 centimeters more than 100 centimeters.
3. Lanie measured the height of her little brother. He is 52 cm tall. How much taller is a meter stick than her brother? \qquad 48 cm.

$\mathbf{5 2 + \ldots}$	$=\mathbf{1 0 0}$		
$\mathbf{5 2 + 8}$	$=\mathbf{6 0}$		
$\mathbf{6 0 + 4 0}=\mathbf{1 0 0}$			
$\mathbf{8 + 4 0}=\mathbf{4 8}$		\quad	This is like a missing addend problem. I can solve
:---			
by adding on. I want to get to 100 because a			
meter stick is 100 cm long. I know that $52+8$			
will get me to the friendly number 60.			
Then, $60+40=100$. And, $8+40=48$.			

G2-M2-Lesson 7

1. Measure each line with one small paper clip, using the mark and move forward method. Then, measure in centimeters using a ruler.

2. Christina measured Line C with quarters and pennies.

Line C

Why did Christina need more pennies than quarters to measure Line C?
Since the quarter is bigger, it takes fewer quarters to measure the same line. If the length unit
is smaller, like a penny, then you need a greater number of pennies to measure the line.

If the unit size is bigger, like quarters, then you need fewer units. If the unit size is smaller, like pennies, then you need more units. Coins aren't a good measurement tool. Centimeters are much more reliable because each length unit is the same!

G2-M2-Lesson 8

1.

Line A is \qquad 8 cm. $\quad 14-6=8$

Line B is \qquad cm.
$11-2=9$

Lines A and B are \qquad 17 cm. $\quad \mathbf{8 + 9}=\mathbf{1 7}$

Line A is \qquad 1 cm (longershorter) than Line B.

Since Line B starts at 2 cm , I can take away 2 cm from where the line ends at 11 cm . So, the line is 9 cm .
2. A cricket jumped 5 centimeters forward and 9 centimeters back and then stopped. If the cricket started at 23 on the ruler, where did the cricket stop? Show your work on the broken centimeter ruler.

I can use addition and subtraction to solve.
I can start at 23 and count on 5. Then,
I can hop back 9 centimeters or subtract 9 .
The cricket stops at 19 cm .

3. All of the parts of the path below are equal length units. Fill in the lengths of each side.

The path is $\mathbf{3 2}$ length units long.
How many more parts would you need to add for the path to be 40 length units long? \qquad 2 parts

G2-M2-Lesson 9

1. Tommy completed the chart below by first estimating the measurement around three body parts and then finding the actual measurement with his meter strip.

Body Part Measured	Estimated Measurement in Centimeters	Actual Measurement in Centimeters
Neck	25 cm	31 cm
Wrist	13 cm	17 cm
Head	50 cm	57 cm

What is the difference between the longest and shortest measurements?
\qquad cm $57-17=40$

Draw a tape diagram comparing the measurements of Tommy's neck and wrist.

2. Measure the two paths below with your meter strip and string.

Path A is \qquad 14 cm long.

Path B is \qquad cm long.

Together, Paths A and B measure \qquad cm.

$$
14+13=27
$$

Path A is \qquad cm (shorter/longer)than Path B.
$14-13=1$

G2-M2-Lesson 10

Use the Read-Draw-Write (RDW) process to solve. Draw a tape diagram for each step.

Jesse's tower of blocks is 30 cm tall. Sarah's tower is 9 cm shorter than Jesse's tower. What is the total height of both towers?

Step 1: Find the height of Sarah's tower.

$10-9=1$
$20+1=21 \quad$ Sarah's tower is $\mathbf{2 1}$ cm.

Step 2: Find the total height of both towers.

The total height of both towers is 51 cm .

